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ABSTRACT

In this work, we explore incorporating spatial information into feature and action
representations of deep reinforcement learning in the pursuit of a single multi-body
locomotion policy. Instead of the traditional feature vectors used in continuous
RL, we introduce a body-space state representation that maps sensor readings
onto a spatial grid overlay of the robot’s body, implicitly encoding relative posi-
tional information. Additionally, we introduce a motor-space action representation
that projects motor torques out of a similar spatial grid. Models map from input
body-space to output motor-space, instead of from the observation space of joint ve-
locities and angles to the action space of joint torques. To demonstrate the multitask
and transfer capabilities of models trained with our representations, we introduce
an environment based on the Box2D physics simulator that allows creation of robot
bodies with arbitrary structure, physical properties, and dimensions and show that
models trained using our representations can learn a walking policy transferable
across many randomized body configurations. Videos can be found at https://
sites.google.com/view/proprioceptive-representations.

1 INTRODUCTION

Figure 1: Spatial representations. Note that the policy model now maps from body-space to motor-
space, rather than from body and joint feature vector to joint torque vector.

Humans and many animals can actively track the spatial orientation of their bodies without any
additional external signals (Proske & Gandevia, 2012) (Riemann & Lephart, 2002) and depend
heavily on this proprioceptive sense in order to learn and improve motor function after injury (Aman
et al., 2015). Most modern deep reinforcement learning continuous control models use relatively
simple feature and action representations in locomotion tasks, often one-dimensional feature vectors
containing joint angles or velocities. These representations rarely encode the relative positional
information of the agent body, such as the proprioceptive pose of the agent body. Additionally, many
modern neural network architectures require a fixed state and action space dimension, which makes
transfer to robots with a different number of body parts or joints impossible. Current workarounds
range from zero-padding a higher-dimensional state and action space (Chen et al., 2018), learning
a representation in a feature space shared across tasks (Gupta et al., 2017), or reusing parts of the
model based on a pre-specified semantic parse of the robot morphology (Wang et al., 2018). All of
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these methods have downsides, either being a potentially unintuitive and inefficient use of model
capacity or requiring additional domain expert input.

In this paper, we project joint and sensor information using proprioceptive spatial position onto
grid-based representations in order to facilitate learning a general walking policy (see Fig. 1). These
new representations only require a small amount of additional information over the standard one-
dimensional feature vector. By mapping 1-dimensional feature vectors onto a 3D grid, we can
integrate spatial information about the robot in a natural way. With the addition of a similar motor-
space representation, where the motor torques are projected out of the appropriate grid cell, we
can use models that map from body-space configurations to motor-space torques, rather than from
vectors of joint velocities and angles to vectors of joint torques. Such spatial representations enable
the use of convolutional models which propagate local information into global representations, and
allows the end-to-end discovery of a communication topology between nodes of the agent body
structure. Additionally, our spatial representation is invariant to the number of sensors and actuators
of a particular robot body, producing policies generalizable to a wide range of robot bodies with
differing numbers of sensors or motors.

The main contributions of our work are summarized as follows:

• An observation- and action-space representation for continuous control that enables straight-
forward multi-body transfer.

• An extension to the OpenAI Gym BipedalWalker-v2 environment to support a variety of
pre-defined robot bodies with arbitrary shape and structure.

• Results demonstrating that the grid-based representations match or exceed baselines on
randomized multi-body locomotion tasks.

2 RELATED WORK

A large body of work surrounds transfer in reinforcement learning domains (Taylor & Stone, 2009).
One approach involves learning embeddings in a shared feature space to facilitate transfer between
morphologically-different robots (Gupta et al., 2017). Another approach focuses on meta-learning
combined with a dynamics model of the desired task to ease online adaptation to unseen perturbations
of the environment (Clavera et al., 2019). Modular neural network architectures have been shown to
improve transfer across tasks and robots (Devin et al., 2017). Evolving the task (Wang et al., 2019a)
and the agent morphology (Ha, 2018) can result in complex learned policies, and jointly optimizing
the two can yield high-performing agents for a wide range of tasks (Schaff et al., 2018).

In this paper, we examine models with a basic level of transferrability across seen and unseen bodies
without any explicit transfer techniques in order to exhibit the applicability of our spatial state
representations to general robotic control. Previous work in learning policies transferable across
different robot morphologies has examined the issue from several perspectives. The one most aligned
with our own is to develop state and and action representations that are generalizable across bodies.
This is typically achieved by parameterizing the policy (Wang et al., 2018; 2019b; Pathak et al.,
2019) or a model (Sanchez-Gonzalez et al., 2018) with a graph neural network. Wang et al. (2018)
employ message-passing graph neural networks on a hand-specified graph mimicking the physical
connectivity structure of the robot body. Using this graph connectivity, they are able to achieve
transfer of periodic walk-cycle locomotion policies to bodies with an unseen number of body parts or
joints. More recent work extended this model to have an evolutionary process drive the design of the
robot’s physical connectivity in tandem with its graph-based policy (Wang et al., 2019b). Similarly,
Sanchez-Gonzalez et al. (2018) and Pathak et al. (2019) show that the propagation of information
in GNNs to different body parts plays an important role in robot locomotion. An alternative to
representation design is to condition a policy on an embedding computed from characteristics of
the robot body, such as was done in Chen et al. (2018), where vector embeddings computed from
structural information about the robot body were used as side-information to modulate a policy.
Results demonstrated success of this conditioning mechanism on both zero-shot transfer and transfer
after fine-tuning. Our work differs from these previous approaches in that we forgo explicitly
providing the (graph) communication topology of the robot, and instead aim to self-discover an
optimal communication between nodes in the body through the end-to-end learning of a convolutional
network.
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3 SPATIAL REPRESENTATIONS

In this section, we describe our body-space and motor-space representations. Our body-space
encoding consists of a grid superimposed over the agent body. Sensor information is projected into
the grid cells occupied by the sensors. Action outputs, i.e. motor torques, can be likewise projected
out of the companion motor-space grid output of our models. See Fig. 1 for an overview of the
process. We describe our spatial representation in two dimensions for clarity and consistency with
our two-dimensional test environment. However, the generalization to three-dimensional control is
straightforward.

3.1 BODY-SPACE AND MOTOR-SPACE ENCODINGS

In standard continuous control, we are given a N -dimensional feature vector f = (f1, . . . , fN )
consisting of information obtained from sensors about the robot’s state. Each feature has one of M
sensor types {S1, . . . , SM}. We assume that each of the elements of the feature vector were obtained
from sensors which have a physical location on the robot’s body. Let p(fi) denote the physical sensor
location of the ith feature and let the P -dimensional action vector a = (a1, . . . , aP ) be the desired
actuator control outputs at any given time step. Each actuator has a physical location on the robot
body, denoted by p(ai), and has one of Q actuator types {A1, . . . , AQ}.
We define a body-space representation by projecting the sensor values onto a discrete uniform 3D grid
GS with dimensionsW ×H×M , with a channel for each of M sensor types. The resolution W ×H
of the grid to be superimposed over the agent body is chosen as a hyperparameter. Each sensor has its
information written into the superimposed grid cell containing its physical sensor location p(fi), in
the channel corresponding to its sensor type. The remaining cells are filled with zeros. Note that we
can encode the implicit relative positional information explicitly by writing a 1 instead of the sensor
information into each grid cell containing a sensor and appending this indicator grid to the existing
feature vector.

We likewise define an action-space representation with Q different actuator types as a W ×H ×Q
grid, superimposed over the agent’s body. The action for each actuator is projected out of the
grid cell containing the actuator location p(ai), in the channel corresponding to its actuator type.
Such an action space representation enables a straightforward fully-convolutional mapping from the
body-space representation and allows learning of a more general policy independent of specific motor
index orderings, as well as of feature vector and action vector dimensions.

3.2 MODELS

Given a body-space representation, we can utilize several models to obtain a policy. Convolutional
neural networks are capable of capturing spatial dependencies in our encodings and are therefore a
natural choice for learning policies that can take advantage of both the proprioceptive information
encoded in the relative positions of the sensors and joints as well as the readings of those sensors and
joints.

We tested three different convolutional architectures: a standard deep convolutional network (CNN),
a Residual-Network (ResNet) architecture and a convolutional-LSTM (ConvLSTM) architecture.
The ConvLSTM is the most expressive of these architectures, propagating information not only
locally through space but also locally through time, and was the most successful in training out of
the three body-space models. We compare our models to a generic multi-layer perceptron (MLP)
baseline with a late-fusion LSTM, optimized for the BipedalWalker-v2 environment. We also study
the effect of adding positional information, consisting of a flattened indicator grid (with ones in cells
containing sensors), to the MLP baseline, which we call FlatMLP. These models are described further
in Appendix B.

4 EXPERIMENTS

In the following section, we examine the body-space representation’s role in learning a general walk-
ing policy transferable over a range of similar robot body configurations. We introduce an extension
of the OpenAI Gym (Brockman et al., 2016) BipedalWalker-v2 environment called JSONWalker,
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Figure 2: Canonical Bipedal Walker (top) and sampling of randomized variations.

which allows creation of arbitrary robot bodies via an input JSON file. The goal of the environment
remains to travel as far as possible without falling, i.e. without the predesignated “hull" segment
touching the ground. Reward is given based on distance traveled, with a small penalty for applied
motor torques and a larger penalty for the hull hitting the ground. We call the base robot body for each
environment (i.e. the original BipedalWalker) the Canonical body while variations of this canonical
body are referred to as Randomized bodies. In order to maintain consistency among randomized
bodies during model comparison, we generate a dataset of random walker bodies and perform a
train/valid/test split. At training time, a body is randomly sampled from the training set at the start of
each episode. Early stopping / model selection is performed by running every model checkpoint for a
set of 100 episodes on every body in the validation set and averaging the results. We then use the test
set after model selection to determine zero-shot policy transfer to new walker morphologies.

4.1 BIPEDAL WALKER

We validate our body-space representations and corresponding models on a randomized dataset based
on the BipedalWalker body, which consists of a walker with 2-joint legs (hip + knee) without any feet
and a hull connecting the two legs together. In addition to randomizing the dimensions of each body
part of the canonical BipedalWalker-v2 up to a 25% tolerance, we add variation by splitting the hull
into a number of flexible segments with equal length. Our datasets have an equal number of bodies
with each number of segments—e.g. there are 10 bodies with 1 hull segment, 10 bodies with 2 hull
segments, etc. However, we randomly choose which hull segment to attach the legs to, resulting in
bodies that range from approximately balanced to severely front- or back-heavy (see Figure 2).

Although the hull vertebrate are deformable and actuated, we do not allow the agent to control the
motors between hull segments. Thus, the difficulty in this environment lies in the often-unbalanced
nature of the multi-segment bodies, which requires a single policy to learn different gaits and adapt
on-the-fly to the particular body configuration and balance. We do not enable sensor reporting of
the segment bodies or joints, which requires the models to deduce the balance of the body from the
behavior of the legs and center hull segment alone. Additionally, the hanging hull vertebrae add
some swinging force, requiring the bodies to have some level of robustness as they journey across the
uneven terrain of the environment. For details on the construction and composition of our dataset, see
Appendix A.

In addition, for the experiments presented in this paper, we resolve potential issues that arise when
sensors and actuators overlap in 2D position by introducing a simple 2-channel "depth" to our
mapping. This extends the setting described in Section 3.1 from 2-dimensional pixel features to
3-dimensional voxels. Since there are only 2 depth values, we do not require a 3D convolution and
instead just stack the two depth channels and, for simplicity, use the same models we would in a
2-dimensional setting.

Figure 3 shows training and validation results of the baseline MLP model (“MLP”), our convolutional-
recurrent body-space model (“ConvLSTM”), the MLP augmented with grid information (“FlatMLP”),
and, as a sanity check, an MLP baseline trained only on the canonical body (“Canonical MLP”). Table
1 gives the proportion of bodies in each dataset solved, where “solved” is defined as a threshold of
mean 200 episode return. To test performance with bodies more “out-of-distribution”, the validation
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Figure 3: Smoothed training (left) and validation (right) curves of Randomized BipedalWalker with
off-center, segmented hull.

Model Multitask Zero-Shot
Transfer

MLP 84.6% 76.1%
ConvLSTM 89.9% 83.2%
FlatMLP 51.9% 21.8%
Canonical MLP 39.3% 24.6%

Table 1: Proportion of bodies solved by each model on each dataset. A body is solved if 100
evaluation episodes achieve return greater than 200.

and testing datasets contain bodies with unseen numbers of hull segments—see Appendix A for more
information.

The ConvLSTM model is able to obtain the highest success rates across all three datasets. The
addition of positional information to the baseline MLP policy (FlatMLP) does not result in a higher
quality policy, which is likely due to the spatial variance of the lower feedforward layers. Because
there could exist physically larger models in the test set, grid positions further away from the model
center which were not visited during training have effectively random weights. These random weights
could thus explain the catastrophic performance of FlatMLP when transfering to new bodies. The
results of the canonical MLP serve as a demonstration that training on a single body (the original
BipedalWalker-v2) is not sufficient to perform well in this multi-body setting.

5 CONCLUSION AND FUTURE WORK

In this work, we addressed the issue of learning a general walking policy that can be transferred
between robot bodies requiring different gaits. We introduce body-space and motor-space spatial
representations in order to facilitate learning such policies, and propose a randomized locomotion
task to evaluate models trained with and without these representations. We demonstrated that our
spatial representations enabled superior multitask and transfer learning within these domains when
compared to baselines that did not take spatial information into account.

Future directions we are looking at is to validate our representations on a larger variety of robot
configurations, including the Raptor and Dog bodies of Peng et al. (2016), deformable soft-body
robots, and popular MuJoCo control benchmarks including Hopper, HalfCheetah, and Ant. We
are also interested in determining whether our method can be extended to work on more complex
locomotion scenarios (e.g. a randomized BipedalWalkerHardcore). In addition, we plan to release
the JSONWalker environment as a potential rapid test-bed for research in multi-robot transfer. The
JSONWalker enviornment enables the rapid construction and automatic randomization of a large
potential variety of robot morphologies, and unifies them within a simple gym-based API.
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Attribute Canonical value ± tolerance

Hull height 16.0 ± 4.0
Hull width 64.0 ± 16.0
Upper leg height 34.0 ± 8.5
Upper leg width 8.0 ± 2.0
Lower leg height 34.0 ± 8.5
Lower leg width 8.0 ± 2.0

Table 2: Parameters altered to produce the random BipedalWalker bodies.

A ENVIRONMENT DETAILS AND RANDOMIZATION PARAMETERS

We randomized the parameters listed in Table 2 by ±25% of their canonical values, resulting in
walker bodies that are different from the canonical body but could still share a fixed-size body-space
and motor-space grid. Since changes to sizes of body parts can compound, we found that 50%
randomization was too aggressive and would require different grid sizes and resolutions for the largest
and smallest of the generated bodies. We assign 6 configurations of hull segments i ∈ [1, . . . , 12]
to be training configurations, 3 to be validation configurations, and 3 to be testing configurations.
Then, for each configuration, we generate 10 randomized bodies, resulting in a total of 120 body
configurations—a training set of 60 bodies, a validation set of 30 bodies, and a testing set of 30
bodies. The hull segment configurations assigned to the training dataset were 1, 2, 4, 6, 10, and 12,
the configurations assigned to the validation dataset were 3, 7, and 8, and the configurations assigned
to the testing dataset were 5, 9, and 11.

B MODEL ARCHITECTURES AND HYPERPARAMETERS

Hyperparameter Values

Adam learning rate [0.0001, 0.0005, 0.00025, 0.001,
0.00005, 0.000025, 0.00001]

Adam betas (0.9, 0.999)
Adam epsilon 0.001
Discount factor γ 0.99
GAE parameter τ 1.00
Timesteps per rollout 20
Frame stack 1
Max episode length 10000
Body-space grid dimensions W ×H ×M 24× 24× 20
Motor-space grid dimensions W ×H ×Q 23× 23× 2
Length of single grid cell in world space [5.0, 10.88]

Table 3: Hyperparameters tested.

Gaussian policies with mean and variance µ and σ are a natural fit for continuous control environments
(Williams, 1992). Therefore, our models map from the state-space of the task to the parameter space
of our policy distribution π ∼ N (µ, σ), from which we sample an action. See Figure 4 for a
breakdown of the layers used in each network architecture.

For clarity, we also show the state encoder and action decoders, as well as the body-space representa-
tion and action-space representation when appropriate. These modules simply encode the feature
vector into the appropriate body-space representation and decode the action-space representation
output of our models into an action vector of motor torques. The value baseline of body-space models
is an action-space output, as described in the previous section. A value baseline scalar is decoded
from this action-space output by taking the mean of all cells that contain an actuator, which we found
to be a simple and intuitive method of obtaining a value baseline from our action-space representation
that does not add any additional parameters or layers.
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Figure 4: Model architectures. Top left: MLP baseline with late-fusion LSTM (MLP). Tensor
dimensions are for canonical BipedalWalker body. Top right: MLP baseline with added grid
positional information (FlatMLP). Bottom left: Body-space convolutional model (CNN). Bottom
center: Body-space convolutional model with residual skip connections (ResNet). Bottom right:
Body-space convolutional LSTM model (ConvLSTM).
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Using the AMSGrad variant on the Adam optimizer, we performed a relatively simple grid search
where we only varied the learning rate. Table 3 summarizes the hyperparameters tested. Due to the
relatively high cost of running a comprehensive battery of evaluations on all randomized bodies in a
dataset, we chose high-performing models by running a test episode on a random body every 10K
gradient steps and choosing the body that exhibited the strongest training curves before the process
of model selection by validation data.
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